PEMDAS Rules

PEMDAS rules

PEMDAS rule can be used to simplify complicated numerical expressions with more than operations.

Very simply way to remember PEMDAS rule!

----> Parentheses

----> Exponent 

M ----> Multiply

----> Divide

----> Add

----> Subtract

Solve the following advanced order of operations problems:

Problem 1 :                                                    (3 * (4 + 2)) * 5

Problem 2 :                                                    (4 * (16 – 1)) – 6

Problem 3 :                                                    5 + (6 + (7 * 2)) // 5

Problem 4 :                                                    3 – (-2 + 7) + 4

Problem 5 :                                                    (18 // 3) * (-2)

Problem 6 :                                                    2*(7 – 13) – (6 - 12)

Problem 7 :                                                    -6 * (2 – 7)

Problem 8 :                                                    –(14 – 8) // (-2)

Problem 9 :                                                    -18 – (8 – 15)

Problem 10 :                                                  -52 // (6 – 19)

Problem 11 :                                                  (38 - (-4))/(6 * (-7))

Problem 12 :                                                  (28 - (-3 * 4))/(10 * (-2))

Problem 13 :                                                 

1. (24+21*(12//9)+12-6)+36

2. 20-12-4-2+5(8+9)**2

3. (1+4)**2-(2*9/6+8)

4. 20 * 4 * 2 *7 - (18//14*6)

5. 120 + ((9/3) / (72/8))**2

6. (1+12*4)**2 - (22*4-12)**2

7. 18/12//24*23-12+8*6

8. (40 - 3 - 5)**2 + (12/4*6)**2

9. ((12//8-4)**2)**2 - 12**2

11. 10-9*24/8*6

11. 14+18/2*18-7

12. 15*18+12/3+9

13. 10/5+10-9*11

14. 8*4+9-9+18

15. 3*19*14+18/2

16. (9+33-6)/6-3**2

17. (6+3)**2+(9-10/5)

18. (24+21*(12%9)+12-6)+36

19. (1+4)**2-(2*9%6+8)

20. 20 * 4 * 2 *7 - (18%14*6)