PEMDAS rules
PEMDAS rule can be used to
simplify complicated numerical expressions with more than operations.
Very simply way to remember
PEMDAS rule!
P ----> Parentheses
E ----> Exponent
M ----> Multiply
D ----> Divide
A ----> Add
S ----> Subtract
Solve the following
advanced order of operations problems:
Problem 1 : (3 * (4 + 2))
* 5
Problem 2 : (4 * (16 – 1)) –
6
Problem 3 : 5 + (6 + (7
* 2)) // 5
Problem 4 : 3 – (-2 + 7) + 4
Problem 5 : (18 // 3) * (-2)
Problem 6 : 2*(7 – 13) – (6 - 12)
Problem 7 : -6 * (2 – 7)
Problem 8 : –(14 – 8) // (-2)
Problem 9 : -18 – (8 – 15)
Problem 10 : -52 // (6 – 19)
Problem 11 : (38 - (-4))/(6 *
(-7))
Problem 12 : (28 - (-3 * 4))/(10 *
(-2))
Problem 13 :
1. (24+21*(12//9)+12-6)+36 |
2. 20-12-4-2+5(8+9)**2 |
3. (1+4)**2-(2*9/6+8) |
4. 20 * 4 * 2 *7 - (18//14*6) |
5. 120 + ((9/3) / (72/8))**2 |
6. (1+12*4)**2 - (22*4-12)**2 |
7. 18/12//24*23-12+8*6 |
8. (40 - 3 - 5)**2 + (12/4*6)**2 |
9. ((12//8-4)**2)**2 - 12**2 |
11. 10-9*24/8*6 |
11. 14+18/2*18-7 |
12. 15*18+12/3+9 |
13. 10/5+10-9*11 |
14. 8*4+9-9+18 |
15. 3*19*14+18/2 |
16. (9+33-6)/6-3**2 |
17. (6+3)**2+(9-10/5) |
18. (24+21*(12%9)+12-6)+36 |
19. (1+4)**2-(2*9%6+8) |
20. 20 * 4 * 2 *7 - (18%14*6) |